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1 Introduction

Generative modeling is a type of machine learning that involves creating models capable

of generating new data similar to the training data. Hence, given a data set {xi}Ni=1 of a

data distribution of interest with x ∈ Rd, the objective is to generate new samples that

also come from this distribution. It is related to the concept of density estimation, which

aims to determine the probability distribution from which the observed data was drawn,

but generative modeling does not always explicitely estimate the underlying density (cf.

generative adversarial networks (GANs)) whereas density estimation does not focus on the

generation of new samples (cf. kernel density estimation (KDE)). Essentially, the data

distribution is modeled using a parameterized energy function fθ for θ ∈ Θ such that

pθ(x) =
exp(−fθ(x))

Zθ
. (1)

Note that Zθ > 0 is the partition function ensuring a proper normalization such that the

Boltzmann distribution pθ is actually a probability density function (PDF). Although com-

puting Zθ in practice can be challenging, there are techniques in maximum likelihood

learning to estimate Zθ [Hin02]. On the other hand, normalizing flows require a con-

strained mapping which always yields a normalized PDF while diffusion models directly

model ∇x log p(x). Moreover, models such as variational autoencoders (VAEs) and GANs

do not directly model p(x) but rather implicitely learn the statistics of the underlying data

distribution.

1.1 Langevin Sampling

Given an estimated probability density p̂ through generative modeling, the task of generating

new samples can be approached using Markov chain Monte Carlo (MCMC) sampling. It

offers a powerful framework, with a very prominent representative in this area being a

first-order MCMC technique, namely Langevin sampling, which originates from physics to

describe Brownian motions of particles in the viscous fluids.

Therefore, for Brownian motion Wt from a Wiener process, the overdamped Langevin

Itô diffusion reads as

dXt = ∇ log p̂(Xt) dt+
√

2 dWt. (2)

The probability distribution of the generated samples Xt approaches a stationary distribu-

tion p̂ in the limit for t→∞.

Discretizing eq. (2) using the Euler-Maruyama method with a fixed step size τ > 0 yields

xk+1 = xk + τ∇ log p̂(xk) +
√

2τzk, (3)

where zk ∼ N (0, Id) is Gaussian noise. This implies that the gradient term guides the

direction of the samples effectively in high-dimensional spaces by generating a sequence of

{xk}k. Note that ε denotes the step size and ∇ log p̂(xk) is the gradient of the target log-

density evaluated at the current xk. The gradient term helps in pushing the sample towards

regions of higher probability, while the noise ensures exploration. Over time, these dynamics

aim to produce samples that approximate the desired target distribution. The Langevin

algorithm thus combines gradient information with stochasticity, making it particularly
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useful for sampling from multimodal or high-dimensional distributions. For illustration

purposes see Figure 1 for a visualization process of the Langevin sampling algorithm (center)

using a simple probability density p(x1, x2) (left). The right subplot shows randomly selected

trajectories of the sampling process.

Figure 1: Example of estimated density p̂(x1, x2) (center) for a target probability density

p(x1, x2) (left) alongside with randomly selected sampling trajectories (right).

Note that the MCMC-based Langevin algorithm from (3) is also referred to as unadjusted

Langevin algorithm (ULA) [RT96]. There is an entire research direction working on sampling

algorithms from extensions of ULA to Metropolis-adjusted Langevin algorithm (MALA)

using a Metropolis-Hastings rejection step [DCWY19] or extenting the applicability to non-

smooth potentials [DMP18] and to Hamilton Monte Carlo (HMC) [N+11] and higher-order

sampling techniques. However, this is out of scope here.

The main advantage of Langevin sampling is rooted in its initialization independence,

whereas a drawback is certainly slow convergence depending on the functions fθ. Further,

Langevin sampling requires access to the log-gradient of p̂(x) (i.e. the score), which is

handled effectively by diffusion models which approximate the score through different tech-

niques such as denoising score matching [SSDK+21]. Moreover, quite some of the available

generative models that are introduced in the next section do not rely on Langevin sampling

to generate new samples, as they are constructed in a way such that their architecture al-

lows to draw new samples e.g. by means of a simple forward pass. The exception of the

presented models are the aforementioned diffusion models, who build on Langevin sampling

in combination with a discretized reverse stochastic differential equation (SDE) to obtain

samples.

1.2 Overview Models

The following paragraphs will present an introduction to a selection of some of the most well-

known generative models. As this can not be covered too extensively, the interested reader

is referred to [Mur22, BB24b]. Note that modeling the density in order to generate new

samples from it is inherently a very challenging problem. While several methods exist that

approach this task from slightly different angles by relying on specific assumptions, there is

(up to now) no model yet that does not come at a disadvantage. The authors in [XKV21]

identify three key requirements that a good generative model should encompass, which are
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Table 1: Table summarizing selected key properties of different generative models.
criterion GMMs VAEs Normalizing flows GANs Diffusion models Flow matching

mode coverage 3 3 3 7 3 3
high sample quality 7 7 7 3 3 3
fast sampling 3 3 3 3 7 3
explicit likelihood 3 7 3 7 7 3
scalability 7 3 7 3 3 3

mode coverage, high sample quality and fast sampling. Note that fast sampling refers to

both fast and computationally inexpensive sampling, which are not defined more rigorous

here but rather serve as a guideline. The “generative trilema” refers to the fact that most

models are usually able to fulfill only two of these requirements – although of course it is

debatable on how sufficient fulfillment of any criterion is defined.

Therefore, Table 1 provides a (by no means exhaustive but) general overview on selected

generative models and whether or not they fulfill some key properties that were identified.

While sample quality and sampling speed are self-explanatory, mode coverage refers to a

model being able to capture all significant modes of a data distribution. Moreover, scalability

refers to the ability of a model to handle high-dimensional data sets and explicit likelihood

computation considers the evaluation of pθ(x). It should be mentioned that it is also more

of a philosophical question of whether a model has to be scalable to high-dimensional data

sets or whether an explicit likelihood evaluation is actually required – thus this should not

be assessed further. This review was conducted for the vanilla version of the generative

models, as each of them entails numerous improved versions, however such a comparison is

out of scope.

2 Gaussian Mixture Models

Gaussian mixture models (GMMs) are perhaps the most fundamental models for generative

models. Being a parametric method, they rely on assumptions of a specific functional

“parametric” form of the underlying density p(x), namely that it is constituted of a weighted,

normalized sum of K multivariate Gaussian components. Given this assumption, the task

shifts to estimating the parameters of the proposed distribution using a set of given data

samples {xi}Ni=1 with xi ∈ X = Rn. Therefore, for a GMM with weighted sum of K Gaussian

distributions, the density is given by

p̂(x) =

K∑
k=1

πkN (x|µk,Σk).

The estimated density p̂(x) is parameterized using K multivariate Gaussians, whose means

µk ∈ Rn and covariance matrices Σk ∈ Rn×n have to be learned from the data. Moreover,

the so-called mixing coefficients πk ∈ R have to be fitted, which additionally live in the unit

simplex ∆K with ∆K = {πk : πk ≥ 0,
∑K
k=1 πk = 1}.

The parameters of GMMs are typically estimated using the expectation-maximization

(EM) algorithm [DLR77, BN06]. Starting with initial guesses (often obtained from k-means
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initializations), the expectation maximization (EM) algorithm iteratively refines these pa-

rameters to maximize the likelihood of the observed data under the model. Figure 2 shows

for a given training data set the sampled results for a fitted GMM with K = 10 components.

Figure 2: Generative modeling using a GMM on a simple 2D toy data set with K = 10

components. The trainind data (left) is used to fit the parameters of a GMM, from which

new samples can be generated (center), with their corresponding likelihood (right).

3 Variational Autoencoders

One of the most well-known classes of generative models are VAEs, which are built on the

concept of autoencoders [BB24a]. The core aim of autoencoders is to reconstruct input data

x by learning a suitable representation z in a latent space. Thus, the first component of the

model, the encoder Eφ(·), has to inherently learn how to compress the data to map it to

a (lower-dimensional) latent space with z = Eφ(x). This is followed by a decoder network

Dθ, that maps the latent variable to x′, which is required to be of the same dimensionality

as the input data x. Autoencoders are deterministic and thus, their two model components,

the encoder Eφ and decoder Dθ, are modelled by two neural networks, see Figure 3 for their

basic building blocks.

Figure 3: Block diagram showing the basic building blocks of an autoencoder (left) and a

variational autoencoder (right). Note that while the overall structure looks similar, the VAE

is the probabilistic version of an autoencoder, which is indicated by the encoder being the

approximate posterior qφ(z|x) and the decoder the likelihood term pθ(x|z). The approximate

posterior is used here as the true posterior is generally intractable due to the complex, high-

dimensional nature of the data. Figure adapted from [Wen].

Training an autoencoder given a set of data points {xi}Ni=1 can be achieved using an `2
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loss between the input data and the reconstructions, i.e.

L(x, x′) =
1

N

N∑
i=1

‖xi − x′i‖22, (4)

where x′i = Dθ(Eφ(xi)) has been obtained by feeding the sample xi into the encoder and

decoder, respectively.

As the key aim with autoencoders is to learn useful representations of the data, con-

straining the latent space to prevent it from memorizing the data is crucial. There are

also effective strategies such as enforcing autoencoders to denoise data [VLBM08] or to

recover/inpaint masked fractions of images [HCX+22] which enable learning very complex

and powerful representations that benefit various downstream tasks.

Nevertheless, the latent space of an autoencoder will be sparse by construction as it learns

a suitable mapping for the given data points without any further constraint or regularity

imposed on its structure. This is where the concept of VAEs builds upon [KW13] as they

are essentially a probabilistic version of autoencoders that assume the latent variable to

follow a Gaussian normal distribution. See Figure 3 for an overview over the main building

blocks which resemble a lot those of autoencoders. With the goal to model pθ(x), this can

be specified by using latent variables

pθ(x) =

∫
z

pθ(x, z)z. =

∫
z

pθ(x|z)pθ(z)z. .

Bayes’ theorem can be used to model the prior pθ(z), the likelihood pθ(x|z) and the posterior

pθ(z|x), where the posterior is hard to compute due to intractable integrals. Thus, this is

modelled using an approximate posterior qφ(z|x) ≈ pθ(z|x), which is commonly known as

amortized inference. It is modelled by a Gaussian distribution with

qφ(z|x) = N (z|Eφ(x), σ2
φ(x)Id),

where the encoder learns to infer its mean Eφ(x) and standard deviation σφ(x) with the

latter usually being scalar due to isotropy. The variational distribution qφ(z|x) ideally is

as close as possible to pθ(z|x), measured by the Kullback-Leibler divergence (KLD) with

DKL(qφ(z|x)||pθ(z|x)). Using the definition of the KLD with DKL(q||p) =
∫
q(x) log q(x)

p(x)x.
and the product rule, this can be rewritten to

DKL(qφ(z|x)||pθ(z|x)) = log pθ(x)− Ez∼qφ(·|x)

[
log

pθ(x, z)

qφ(z|x)

]
,

where the evidence lower bound (ELBO) Lφ,θ can be identified as

Lφ,θ = Ez∼qφ(·|x)

[
log

pθ(x, z)

qφ(z|x)

]
.

Thus, maximizing the ELBO with Lφ,θ ≤ pθ(x) provides a lower bound to the maximum

likelihood (ML) objective. The objective to learn a VAE can finally be rewritten (using
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again the product rule) as

max
φ∈Φ,θ∈Θ

Lφ,θ = Ez∼qφ(·|x)[log pθ(x|z)]−DKL(qφ(z|x)||pθ(x)),

which in practice can be expressed – where M denotes the size of the latent space – with

max
φ∈Φ,θ∈Θ

− 1
2Ez∼qφ(·|x)

[
‖x−Dθ(z)‖22

]
+M log σφ(x)− 1

2‖Eφ(x)‖22 − M
2 σ

2
φ(x). (5)

To optimize the ELBO with respect to parameters {φ, θ} of the encoder Eφ (the ap-

proximate posterior) and decoder Dθ (the likelihood term), it is necessary to backpropagate

through the sampled latent variable z ∼ qφ(z|x). The is done using the “re-parameterization

trick” which converts the output of the encoder Eφ, which is inherently deterministic, to a

tractable, stochastic latent variable z = Eφ(x)+σφ(x)η with η ∼ N (0, Id). Hence, this is in-

serted into z for the first term in (5), where the expectation operator is further approximated

by sampling a fixed number of latents z to compute the average.

Figure 4 shows for a 2D toy data set consisting of eight Gaussians the generated samples

from a trained VAE along with their densities that were computed using a KDE. This was

fit to the generated samples by employing a hand-tuned bandwidth h (see Section ??).

Figure 4: Generative modeling using a VAE on a simple 2D toy data set. The input data

samples {xi} are shown on the left and the center plot depicts the generated samples coloured

by their estimated density using a KDE. The right plot shows the estimated density of the

generated samples using the VAE for the entire data space.

In practice, there are two major problems of VAEs that have been identified [RV18]. The

first is that of blurred reconstructions arising from latent space regions where the mapping

to the posterior of different data points overlap. The reconstruction is thus a combination

of these data points resulting in a weighted average leading to blurred samples, which is

why VAEs are known to lack high sample quality. The second issue is the “hole” problem,

which occurrs in regions where the posterior qφ(z|x) has low densities such that the ELBO

objective is not constrained to learn a suitable mapping as it is not incentivized to consider

these instances. If the decoder receives latent samples zi that are from latent regions which

were not covered by the input data samples {xi}Ni=1, the generated samples may be highly

deficient in good quality.
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4 Normalizing Flows

4.1 Normalizing Flows

Normalizing flows are another prominent class of generative models [DKB14, RM15, DSDB16].

Their main idea is that they map a tractable prior distribution pZ(z) into a complex data

distribution pX(x) by a so-called flow (note that subscripts are used here to differentiate

the PDFs). Constructing this flow such that it is an invertible mapping allows for a proper

normalization to ensure that the actual likelihood of the data can be evaluated.

Figure 5: Block diagram showing the basic building blocks of normalizing flows. This diffeo-

morphism allows to map from a complex distribution pX(x) to a tractable prior distribution

pZ(z) and back while maintaining explicit likelihood evaluation. Figure adapted from [Wen].

Central to this concept is the change-of-variables theorem (see Section ??) which allows

to transform one distribution into another and vice versa. Thus, given a latent variable

z ∼ pZ(z), an invertible mapping can be constructed such that

x = fθ(z)↔ z = f−1
θ (x).

By the change-of-variables theorem one then obtains

pX(x) = pZ
(
f−1
θ (x)

)∣∣∣∣ f.−1
θ

x.

∣∣∣∣,
which contains the Jacobian of the inverse map. As the inference path can only be mean-

ingful if it is a function of z from whose tractable prior distribution samples can easily be

drawn, this can be rewritten1 as

pX(x) = pZ
(
z
)∣∣∣∣ f.θz.

∣∣∣∣−1

.

Finally, the log-density with pθ(x) ≈ pX(x) is evaluated using

log pθ(x) = log pZ
(
z
)
− log

∣∣∣∣ f.θz.
∣∣∣∣.

This basic concept is outlined in the block diagram in Figure 5. Note that in general the

function fθ consists of a sequence of invertible mappings such that complex data distributions

1Note that this requires a property from the inverse function theorem which states that for x = f(z) ↔

z = f−1(x) it holds that
f.
−1

(x)
x.

=
z.
x.

=
(x.
z.

)−1
=

( f.(z)
z.

)−1
. Moreover, the property of the Jacobian of an

invertible function is used.
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can be modelled. Thus, assuming a sequence of L functions fl that map the original latent

variable z := z0 to x using x := zL = fL ◦ fL−1 ◦ · · · ◦ f1(z0), the log-density can also be

computed directly using

log pθ(x) = log p0

(
z0

)
−

L∑
l=1

log

∣∣∣∣ f.l
z. l−1

∣∣∣∣.
The transformations fl are required to be invertible and to have a computable Jacobian.

Learning suitable parameters θ for the invertible transformations fl is done by minimizing

the KLD between the model likelihood and the target distribution:

min
θ∈Θ

DKL(pX(x), pθ(x)) = Ex∼pX(x)[log pX(x)]− Ex∼pX(x)[log pθ(x)].

While the first term is independent of the model parameters θ, the expectation in the second

term can be approximated with a given set of training examples {xi}Ni=1 ∼ pX(x) such that

the objective reduces to the maximum likelihood of the model under the observed samples

of the target distribution, i.e.

max
θ∈Θ

∑
i

log pθ(xi).

In practice, there are various methods for the construction of invertible layers [DKB14,

RM15, DSDB16, KD18], which are not dealt with in more detail here. As a qualitative

example, see Figure 6 where the invertible layers were constructed using the RealNVP

method [DSDB16]. The mapping from samples x ∼ pX(x) from the data distribution

to the prior distribution z ∼ pZ(z) is shown, along with the transformed samples in the

intermediate layers. Note that during inference, one starts in reverse order by drawing

samples z ∼ pZ(z) and subsequently mapping them to the data distribution using the

learned flow. Finally, Figure 7 shows qualitative results of training a normalizing flow

model on a training data set {xi}, where the generated samples and the learned density

(implicit estimation using KDE) follows the original distribution closely.

Figure 6: Generative modeling using a normalizing flow with L = 4 invertible layers on a

simple 2D toy data set. The input data samples {xi} are shown on the left, the center plots

depict the transformed samples in the latent space for each intermediate layer zl and the

right plot shows the final transformed samples z0 := z ∼ pZ(z) in the latent space.
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Figure 7: Generative modeling using a normalizing flow on a simple 2D toy data set: input

samples {xi} (left), generated samples from the trained model (center) and estimated density

from the samples using a KDE (right).

4.2 Continuous Normalizing Flows

As an extension of normalizing flows the authors in [CRBD18] propose continuous normal-

izing flows (CNFs). They characterize a target density q = [Ψ]]p0 as push-forward of a

tractable initial density p0 under a deterministic transformation Ψ: Rd → Rd. Typically,

the transformation Ψ: Rd → Rd is learned via maximum likelihood and maps samples

x ∼ p0 from the initial distribution to samples Ψ(x) ∼ q that follow the target [RM15].

However, CNFs do not directly model Ψ, but rather consider the temporal dynamics of a

time-dependent transformation Ψt : [0, 1] × Rd → Rd with t ∈ [0, 1]. The corresponding

neural ordinary differential equation (ODE) [CRBD18] is given as

d

dt
Ψt(x) = vθ,t(Ψt(x)), (6)

where vθ,t : [0, 1]×Rd → Rd is a parameterized network. It defines a time-dependent vector

field by assigning spatial displacements to each spatio-temporal pair (t,Ψt(x)). The overall

transformation Ψ(x) = Ψ1(x) = x +
∫ 1

0
vθ,t(x)t. for the initial state x is then given by

integrating the spatial displacements over the whole time domain, which can be done by

utilizing off-the-shelf ODE solvers. However, the widespread adoption of CNFs as generative

models has so far been hindered by the cost of maximum likelihood training. Because of this

limitation, flow matching has been introduced as a feasible alternative [LCBH+22, LGL22],

see Section 7.

5 Generative Adversarial Networks

GANs are a well-known type of generative models that were introduced by Goodfellow et

al. [GPAM+14]. The core idea is a system of two neural networks that contest with each

other: one network (the “generator” Gθ) generates samples while the second network (the

“discriminator” Dφ) subsequently evaluates them, which ultimatively leads to the generation

of data that resembles the input data set. The overall idea is also visualized in Figure 8. The

task of the discriminator (left) is to decide whether the samples that it is provided with are

coming from the data distribution p(x) (samples x) or not (samples x′). The fake samples
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x′ are produced by the generator (right) from a latent vector z that is obtained by sampling

from a simple distribution z ∼ p(z). The goal is to eventually fool the discriminator by

learning to produce samples that are not distinguishable from the data distribution.

Figure 8: Block diagram showing the basic building blocks of GAN. Two networks are

contesting against each other, where the generator (right) produces samples x′ and the

discriminator (left) evaluates them. Figure adapted from [Wen].

Assuming both players to be modelled by neural networks, the parameters of the gener-

ator Gθ and the discriminator Dφ can be learned using the following saddle-point objective

V (Dφ, Gθ)

min
θ∈Θ

max
φ∈Φ

V (Dφ, Gθ) = Ex∼p(x)[logDφ(x)] + Ez∼p(z)[log(1−Dφ(Gθ(z)))]. (7)

The first term maximizes the probability of the discriminator to correctly distinguish

real from fake samples. Meanwhile, the generator aims to minimize the probability of

the discriminator to detect its fake samples. The authors in [GPAM+14] show that for

arbitrary functions of Dφ and Gθ there exists a unique solution such that the generator

produces samples that are not distinguishable from x ∼ p(x) which consequently means

that Dφ outputs 1
2 for all samples as it can only guess. Moreover, they show that given an

optimal discriminator, the training process of the generator can be seen as minimizing the

Jensen-Shanon divergence (JSD) between the learned distribution and the data distribution.

An example of using a vanilla GAN on the 2D toy data set can be seen in Figure 9. Note

that while the generated samples (center, right) are reflecting the density of the data samples

(left), the center plot depicting the produced samples clearly shows that they suffer from

mode collapse i.e. the generator fails to capture the full diversity of the data distribution.

This was also observed on a toy data set in [XKV21]. Mode collapse is a well-known issue

with GANs and it is one of the main drawbacks together with the fact that they can be

notoriously hard to train.

One approach that tries to improve this issue are WGANs [ACB17], that use the Wasser-

stein distance as a distance measure between the distributions of the generated samples and

the data samples. The Wasserstein distance can be seen as the required cost to transform

a probability distribution into another.

The employed objective function (see [ACB17] for a detailed explanation and derivation)

is then given as follows:

min
θ∈Θ

max
φ∈Φ

V (Dφ, Gθ) = Ex∼p(x)[Dφ(x)]− Ez∼p(z)[Dφ(Gθ(z))],

12



which is slightly different to the original formulation in (7). The discriminator is seen as a

critic, thereby returning a score that represents the “realness” of the given data rather than

a probability. Furthermore, weight clipping is introduced to enforce a Lipschitz constraint

that is required for the critic to effectively estimate the Wasserstein distance. This helps

with both reducing mode collapse and stabilizing the training process, as the distance metric

provides meaningful gradients even when the generator produces very unrealistic samples

which would result in vanishing gradients with the vanilla GAN setup.

Figure 9: Generative modeling using a GAN on a simple 2D toy data set. Note that while

the trained generator manages to capture the main modes of the distribution, the generated

samples suffer from mode collapse. The density in the right subplot was estimated using a

KDE on the entire data space with the learned GAN.

The introduction of GANs have led to many variants. The work of Radford et al. intro-

duced deep convolutional generative adversarial networks (DCGANs) [RMC15] by proposing

to replace the fully connected networks by a sophisticated convolutional architecture, which

helped to better scale GANs to high-quality image synthesis. Moreover, the work of Isola et

al. introduced conditional GANs [IZZE17] to enable conditional image synthesis, paving the

way for image inpainting, segmentation, super-resolution and many other applications. Al-

though no explicit likelihood evaluation is possible with GANs, they show exceptionally high

sample quality while maintaining fast sampling. Such results have not been achieved with

other generative models previously and this was only surpassed very recently by diffusion

models [DN21].

6 Diffusion Models

6.1 Stochastic Differential Equations

Diffusion models are a younger and very promising type of generative models [SDWMG15,

SSDK+21, HJA20], which have different motivational perspectives such as non-equilibrium

thermodynamics, score matching and SDEs. Essentially, they can be viewed as an interpo-

lation between a data distribution of interest (this will be denoted as p0) and a tractable

prior distribution p1, from which samples can easily be obtained. This interpolation should

be bidirectional, whereas going from data to noise is a noising process (the forward process)

and retrieving data from noise is the generative process (the backward process).

It turns out that this can be described mathematically using SDEs, which was described

by [SSDK+21] in a unifying framework to encompass all the different versions such as
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denoising diffusion probabilistic models (DDPMs) and denoising score matching. In its

continuous form, the forward SDE is given by

dXt = f(Xt, t) dt+ g(t) dWt, (8)

where f(·, t) : Rd → Rd is the so-called drift coefficient and g(·) : R → R is the diffusion

coefficient. Depending on the choice of these two terms, different instances of SDEs can

be retrieved such as the variance-exploding scheme (commonly known as DDPMs) and the

variance-exploding scheme (i.e. denoising score matching).

Interestingly, the time evolution of the corresponding density function pt is governed by

the Fokker-Plank equation, which is a partial differential equation and is given by

∂tpt = −div(pt f(Xt, t)) + ∆(pt g(t)). (9)

Hence, the time-related change of a PDF is given by the combination of a drift and a

diffusion term: the drift term represents the deterministic part of the motion by describing

the flow of the PDF due to the drift. Likewise, the diffusion term models the change of the

PDF due to diffusion by incorporating a randomness into the process. If no diffusion term

is present, the continuity equation is recovered (cf. Section 7).

For generative modeling, obtaining a reverse form for the SDE is of interest such that

noise can be transformed into data samples. Therefore, the corresponding time-reverse SDE

reads as [And82]

dXt = [f(Xt, t)− g(t)2∇x log pt(Xt)] dt+ g(t) dW̄ . (10)

Looking closely at eq. (10) where the drift and diffusion terms are governed by the choice

of SDE the only remaining term that has to be determined is the score log pt. Once this is

known (or can be approximated suitable), the reverse SDE can be discretized using a Euler-

Maruyama discretization scheme to sample from the distribution of interest. Therefore, the

next section will present denoising score matching, a method to obtain an estimate for the

score.

6.2 Denoising Score Matching

The concept of score matching has been introduced earlier [HD05] and popularized to de-

noising score matching recently [VLBM08, SE19]. The key insight is that score estimation in

low density data regions is hardly feasible in its native form, thus the data is perturbed by L

different levels of Gaussian noise σi instead with i = 1, . . . , L. Note that σ1 < σ2 < · · · < σL,

which are used to perturb the data distribution p(x) with Gaussian noise N (0, σ2
i Id). There-

fore, samples from the noise-perturbed data distribution x̄ ∼ pσi(x) can be obtained by

sampling random Gaussian noise z ∼ N (0, Id) and then computing

x̄ = x+ σiz.

Estimating the score function of the perturbed samples becomes an easier task and it relies

on Tweedies estimator [Efr11] which gives an estimate for the minimum mean squared error
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(MMSE) of a perturbed sample x̄:

xMMSE = x̄+ σ2
i∇x̄ log pσi(x̄|x). (11)

Note that by replacing the MMSE directly with the known clean sample x in training,

eq. (11) can be reformulated to yield an expression for the perturbed score ∇x̄ log pσi(x̄|x).

This can be contrasted to a score network sθ(·, σi) to learn optimal parameter θ. The

denoising score matching objective is then given by a weighted sum of denoising score

matching terms

θ∗ ∈ arg min
θ

L∑
i=1

σ2Ex∼p(x)Epσi (x̄|x)

[
sθ(x̄, σi)−∇x̄ log pσi(x̄|x)

]
. (12)

The above loss function shows that the training process of diffusion models consists of

learning a denoiser, as it compares the estimated noise by the neural network to the ground

truth noise. While different variants of this exist, namely image denoising, score matching

and noise predictions [KG24], they essentially represent the same idea.

Figure 10 qualitatively depicts for five selected time steps of the discretized reverse SDE

the generated samples by a diffusion model that was trained on the 2D toy data set. Thereby,

a simple prior distribution is gradually turned into the data distribution of interest (from

left to right) to obtain samples.

Figure 10: Generative modeling using a diffusion model on a simple 2D toy data set. The

variance-exploding SDE scheme was used (i.e. denoising score matching) thus the sam-

pling process is given by the discretized reverse SDE. The five selected time steps show

intermediate generated samples during the sampling process.

7 Flow Matching

Finally, it remains to study in a bit more detail the very recently introduced generative

model of flow matching [LGL22, LCBH+22]. Reconsidering the limitations of CNFs, which

were briefly introduced in Section 4.2, their main limitation was the lack of simulation-

free training. It turns out that this necessity can be targeted by considering conditional

flow matching. Again, as with CNFs the goal is to learn a parameterized neural network

vθ,t : [0, 1]× Rd → Rd which satisfies the neural ODE [CRBD18]

d

dt
Ψt(x) = vθ,t(Ψt(x)). (13)

Note that this means that a network vθ,· is learned to encompass the temporal dynamics of

the transformation Ψt.
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The essential insight is that any time-dependent vector field ut : [0, 1]×Rd → Rd which

is related to the temporal dynamics of a given density path pt : [0, 1]×Rd → [0,∞) via the

ubiquitous continuity equation [V+09]

d

dt
pt(x) + div(pt(x)ut(x)) = 0, (14)

can be used as a regression target. The corresponding flow matching objective is thus given

as

LFM(θ) := Et∼U[0,1]Ex∼pt
[

1
2‖vθ,t(x)− ut(x)‖2

]
. (15)

This objective is justified by identifying the density path in Eq. (14) with the one that

is induced by the continuous transformation, i.e., pt = [Ψt]]p0. Thus, it becomes ev-

ident that minimizing Eq. (15) indeed yields a vector field vθ,t(·) characterizing Ψt via

Eq. (13). However, as the marginal ground truth vector field ut is not known in general

and pt can take a complicated form, directly minimizing Eq. (15) is impossible. Instead,

Lipman et al. [LCBH+22] show that ut can be constructed by superimposing many condi-

tional vector fields ut(·|x1) that depend on available training samples x1 ∼ q. The simpler

conditional flow matching objective is thus given as

LCFM(θ) = Et∼U[0,1]Ex1∼qEx∼pt(·|x1)

[
1
2‖vθ,t(x)− ut(x|x1)‖2

]
, (16)

which yields the same set of minimizers as Eq. (15) and reveals similarities to score-based

optimization [HD05]. To obtain an explicit expression for the regression target ut(x|x1), they

propose conditional affine Gaussian flows Ψt(x|x1) = σtx+µt(x|x1). According to Eq. (13) it

is of the form ut(x|x1) = x−µt(x|x1)
σt

d
dtσt+

d
dtµt(x|x1). In addition, the corresponding density

path has the form pt(x|x1) = N
(
x|µt(x|x1), σ2

t Id
)
. Following [LCBH+22], it starts from the

tractable multivariate standard normal distribution p0(·|x1) = N
(
·|0, Id

)
and ends in a Dirac

peak at the conditioning sample x1, i.e., p1(·|x1) = q(·|x1) = N
(
·|x1, σ

2
min Id

)
, σ2

min ≈ 0. In

contrast, the temporal interpolation between (µ0, σ0) and (µ1, σ1) is not uniquely defined

and offers some degree of freedom. In this work, we adopt the best-performing variant

from [LCBH+22] that induces conditional optimal transport paths via µt(x|x1) = tx1 and

σt = 1− (1− σmin)t.

Finally, Figure 11 shows the samples at selected time steps during the sampling process,

which essentially amounts to solving the discretized ODE that characterizes the dynamics

where the learned network vθ,· is used.
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Figure 11: Generative modeling using flow matching on a simple 2D toy data set. The

sampling process is given by the discretized integrated ODE. The selected time steps show

intermediate generated samples during the sampling process.

8 Conclusion

A final comparison of the generated samples on the 2D toy data set is shown in Figure 12.

Moreover, to additionally have a quantitative comparison, see Table 2 for the KLD between

the generated samples and the original data samples x ∼ p(x) that were used to train each

of the generative models. In general, the metrics reflect what can be observed qualitatively

in Figure 12, but this should be taken with caution. Only the baseline models were used

here, whereas numerous enhancements exist that potentially yield improved performances.

Hence, this does not imply that one model is favorable over the others, as all have their

strengths and weaknesses (see Table 1) and essentially, the choice of model will heavily

depend on the specific application.

Table 2: Table showing the computed KLD between the generated samples and the data

samples for each of the generative models.

GMM VAE Normalizing flow GAN Diffusion model Flow matching

KLD 0.0099 0.0950 0.0165 0.1502 0.0149 0.0164
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Figure 12: Comparison of the generated samples from the generative models, namely GMMs,

VAEs, normalizing flows, GANs, diffusion models and flow matching (left to right, top-down)

on the toy data set.
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